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1. Phys. A: Math. Gen. 22 (1989) 1737-1749. Printed in the UK 

Matrix elements of the labelling operators for 
SU(4) 3 SU(2) x SU(2) 

E NorvaiSas and S AliSauskas 
Institute of Physics, Academy of Sciences of the Lithuanian SSR, SU-232600, Vilnius, USSR 

Received 5 October 1988. in final form 22 December 1988 

Abstract. A matrix representation of the labelling operators of Moshinsky and Nagel and 
of Partensky and Maguin in the non-orthogonal Draayer basis of SU(4) is derived; this 
allows one to solve explicitly the missing label problem for the spin-isospin multiplets in 
the arbitrary SU(4) supermultiplets. The simplification and degeneration of these rep- 
resentations are considered for two parametric irreducible representations of SU(4), as 
well as for some special cases of irreps typical of nuclear theory. The expansion of the 
linearly dependent states of the Draayer basis is discussed. 

1. Introduction 

The Wigner supermultiplet model continues to play an important role in nuclear 
spectroscopy (Gaponov er a1 1980,1982, Gaponov 1984). Many solutions are suggested 
for the missing label problems of the SU(2) x SU(2) states in the Wigner supermultiplets 
of SU(4). The eigenstates of the classifying operators of Moshinsky and Nagel (1963) 
or Partensky and Maguin (1978) may be chosen as alternatives to the non-orthogonal 
analytic supermultiplet bases (Draayer 1970, Ahmed and Sharp 1972, see also NorvaiSas 
and AliSauskas 1977, AliSauskas and NorvaiSas 1979, Hecht et a1 1987). These two 
complete sets (couples) of commuting operators (SU(2) x SU(2) scalars) belong to the 
enveloping algebra of SU(4) (Quesne 1976,1977) when the operators from the different 
couples do not commute. The eigenvalues of these operators have been determined 
only for some concrete irreducible representations (irreps) of SU(4) (Partensky and 
Maguin 1978) and for some non-degenerate or twofold degenerate states of the 
spin-isospin in SU(4) (Van der Jeugt et a1 1983). 

Also, AliSauskas and NorvaiSas (1979) obtained the matrix elements of the SU(4) 
generators in the Draayer (1970) projected basis. Only the appearance of the linearly 
dependent states makes their explicit expressions more complicated. 

It is the purpose of our paper to present the matrix elements of the labelling 
operators of Moshinsky and Nagel (1963) and Partensky and Maguin (1978) in the 
projected (Draayer 1970) basis for arbitrary irreps of SU(4). The solution of the 
eigenvalue problem together with the expression for overlaps of the projected SU(4) 
states (see NorvaiSas 1981, AliSauskas 1982, 1983) leads to the orthonormal basis states 
of the supermultiplet basis. 

Considerable simplifications are possible for special classes of irreps and particular 
cases typical of nuclear theory. In the appendix we reconsider the expansion of the 
linearly dependent states of the Draayer basis, which will also be necessary for 
calculating Clebsch-Gordan coefficients in a future publication. 

0305-4470/89/111737+ 13%02.50 @ 1989 IOP Publishing Ltd 1737 
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2. Definitions and notation 

The infinitesimal operators (generators) of SU(4) form SU(2) x SU(2)-irreducible 
tensor operators with the following components: 

T O = t ( E l l - E 2 2 + E 3 3 - E 4 4 )  
(2. lb) 

T+ =-(l/a)(E12+E34) 

U01 = (1/m(E34-E,2) 

T- = (1/”1+ E431 

uo-I = (l/J5)(E21- E43) 

U,  1 = E14 U1 0 = ( 1 /a) ( E24 - E131 U , - , =  -E23 

(2.lc) 
U-11=-E32 U-lO= (1/fi)(E31 -E42) U-1-1= E41 

Uoo = f(Ei 1 - E 2 2  - E33 + Ea) 

[Eij, E k l l  = 8jkEil- SirEkj. 

where the E, satisfy the usual commutation relation 

(2.2) 

= m 1 4 - m 2 4  A 2 =  m24-  m34 h 3 = m 3 4 - m 4 4  (2.3) 

Irreps of SU(4) may be denoted by triplets ( A , A 2 A 3 ) ,  where 

and [m14, m24, m34r ma] is a Young tableau for an irrep of U(4). Some authors use 
the parameters [ p p ’ p ” ]  of irreps of the locally isomorphic group SO(6) where 

p = ; ( A ,  + h 3 )  + A 2  p ’  = $ ( A  1 + h3) p ” = f ( h l  - A 3 ) .  (2.4) 

The states of the non-orthonormal Draayer (1970) basis are defined as 

where PLsKS,  PLJKT are the projection operators of the two SU(2) and 

1 A1 + A 2 +  A ,  h 2 + A 3  A3 o \  
(2.6) 

k ,  +;Al  + h 2 +  A 3  A 3  

k ,  +:A , + h 2 +  h3  
k ,  + f h  , + A 2  + h3 + k3 I GE KSKT}) = 

are special Gel’fand-Zetlin states, which form the basis of irrep ($Al, ;A3) of the 
block-diagonal subgroup SU(2)OSU(2) generated by U , ,  , U - , , ,  U , - , ,  and their 
commutators. Here k, =f(& + KT), k3 = f( Ks - KT), and 

scp T S p  S + T S p + p ’  I S - T I = s p * p ”  (2.7) 
and f h ,  * k, , $A3* k3 are non-negative integers. 

1970) k, 2 0 ( k3 s 0 if k ,  = 0) and, when S - T > h 2 ,  
The linearly independent states (2.5) are determined by conditions (cf Draayer 

KSSS-A, ( 2 . 8 ~ )  

or, when T-S>A2, 

K T z  T-A2 (2.8b) 
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and (separately for each sign of k, )  

k ,  + lk31 ai [S+ T - A , +  1 + (1 - Ao) sgn(k, - a ) ]  ( 2 . 8 ~ )  

when IS - TI d A * .  Here A. = 1 or 1 and A 2  - S + T - A. is an even integer. The values 
Ks = KT = 0 are allowed only when S + T - A 2  d 0 is an even integer. Some linearly 
dependent states may be eliminated by means of the relation (3.12) of Aliiauskas and 
NorvaiSas (1979): 

- KsSMs ( A  1 A 2 A 3  ; - KTTMT E ) = (-1)A3+% I K s ~ ~ ~ ~ ~ ; M , j  * 
(2.9) 

The labelling operators (scalars with respect to the spin and isospin) of Moshinsky 

(2.10a) 

(2.10b) 

and Nagel (1963) may be defined as 

n = 3[S x [ T x U]'.o]o.o 

Q, = s +  r+2S2T2+6[S x T x [ U  x 

where S2, T 2  are the Casimir operators of the two SU(2) and 

s = -3fi[[ T x U ] ' 3 0 ~  [ T x  U]l,o]o,o (2.10c) 

(2.10d ) 

are the labelling operators of Partensky and Maguin (1978). The coupling of the 
double SU(2) tensors Wk3' is defined according to Jucys and Bandzaitis (1977): 

r = - 3 f i [ [ ~  x u]O, '  x [ S  x 

(2.11) 

where, in the RHS, the Clebsch-Gordan coefficients of SU(2) are used. 

3. Representation of the labelling operators 

Aliiauskas and Norvaiias (1979) obtained the following representation of SU(4) 
generators Ui,j as the Draayer basis: 

where 
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( 3 . 3 )  

Equation (3.1) has been derived with the help of the commutation relation between 
the tensor and projective operators (cf Elliott 1958). The operators Ulo, U-,o,  VO, 
and U0-, may be replaced by -as,, as-,  -aT+ and a T - ,  respectively, when 
acting on special Gel'fand-Zetlin states (2 .6) .  Later they may be included in the 
projection operators. The remaining operators Uoo, U ,  I ,  U ] - , ,  and U-, ,  belong 
to the Lie algebra of the block-diagonal subgroup U ( 2 ) 0 U ( 2 ) ,  the basis of the irrep 
( + A l ,  ;A3) of which is formed by special Gel'fand-Zetlin states (2 .6) .  

The scalar operators commute with the projection operator. Therefore a rather 
long, though elementary, evaluation allows one to represent the action of the scalars 
included in the labelling operators as follows: 

= {2 [p"(p '+  l)K,K,+ KZ,T( T +  1 ) +  K ; S ( S +  1) - 2 K i K $ ]  
K i K j  

The action of the operator t may be written after the formal substitution S t, T, K ,  - K T ,  
K $ * K ;  into (3 .6)  together with (2 .9 ) ,  if necessary. (The dependence of the non- 
diagonal matrix elements ( 3 . 5 )  on KT, K &  is included in the Clebsch-Gordan 
coefficients of SU(2) . )  The labelling operators may change both parameters K, ,  KT 
by kl or a single parameter by 1 2 .  Therefore, the linearly dependent states which 
appear should be expanded in terms of the complete system with the help of the results 
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of 0 5 of AliSauskas and NorvaiSas (1979)t and the relation (2.9) is insufficient (also 
see the appendix). 

4. Simplification of the labelling operators for two parametric representations 

The analytical bases for irreps of class 2 (covariant) and 1,T (mixed tensor) (i.e. when 
A 3 = 0  or hz=O) have been considered by AliSauskas (1982, 1983, 1984, 1987) and 
Petrauskas and AliSauskas (1987). Thus, for the class 2 irreps of SU(4), the Draayer 
basis is labelled by a single parameter K = K s  = KT 2 +( S + T - A’ + A,,). The operator 
n in this case is represented by a quasitridiagonal matrix because in (3.4) the matrix 
elements with K [ ,  # K i vanish and the linearly dependent states may be expanded by 
means of (5.1) and ( 5 . 6 ~ )  of AliSauskas and NorvaiSas (1979) or our equation (2.9). 
The operator Q, in the basis of the irreps with h3 = 0 is dependent: 

Q, = 2(p +2)n + $ i l ( A ,  + 2 ) [ S ( S +  1) + T (  T +  l)]I (4.1) 
where I is the identity operator. 

The operator s for the irreps of class 2 may be represented as 

s I LLtt:kT) 
= {[ T (  T + 1) - K ’ ] [ : A  I (  A 2  + 2) - K ’3 + K ’[ ( p + 2)’ - S (  S + 1) + K ’I} 

x ( K + K ’ ) H ( f h , ,  K K ‘ ) H ( S ,  K K ’ ) H ( T ,  K K ’ )  

x I Ki:;it:)&MT) 

and 
t - s = f h l ( h l  + 2 ) [ S ( S  + 1) - T (  T + l)]L (4.3) 

The matrix elements of the labelling operators may similarly be simplified for A ,  = 0. 
The linearly independent states of the class l,i irreps may be determined by 

condition K 2  = S (if S 2 T ) ,  but the expansion of the dependent states is more compli- 
cated. The projected states in this case are equivalent (up to norm) to the stretched 
states, which are dual to the polynomial states (see AliSauskas 1984, 1987). Therefore, 
it is expedient to write the tridiagonal representation of the labelling operators in the 
complete (non-overcomplete) basis 

x ( f h l -  k ,  )”’I?( T, - K T ) ]  I ( A 1 0 A 3 ) E  ) 
f h ,  + k, + 1 SSM, ; K > TMT (4.4) 

t The variable _k, in the RHS of equation (5.40) of AliSauskas and NorvaiSas (19791, and Ik,l in the RHS of 
( 5 . 5 ~ )  should both be corrected to l_k,l. In the RHS of (5 .6a ) ,  k$ should be corrected to _k?. 
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= [ {aT( T +  l)[(Al + 1)( A I  + 2) + ( A 3  + 1)( A 3  + 2) - 2 s (  s + 1 )]  
K; 

- p t t K r [  r( 7- + 1) -;I +fK: [A1A3  + 3p + 1 + S (  s + 1) 
+ T (  T +  l)]+p"K:-fK;}6KTK; 

where 
fi(j, m )  = [ ( j +  m ) ( j +  m - l ) ( j - m +  l ) ( j -  n1+2)] ' /~.  

Q, = 2 p m +  ( p +  i ) ( p + 2 ) [ s ( s +  1) - r ( T +  i)11 

t - s = ( p  + i ) ( p  + 2 ) [ s ( s +  1) - T(  T +  1)lI. 

(4.6) 

(4.7) 

(4.8) 

The operators Q, and t in the case of the irreps ( h 1 0 A 3 )  are dependent as well: 

5. Some examples 

Let us present the expansion coefficients of the SU(4) =I SU(2) x SU(2) irreducible 
tensors in terms of basis states (2.5) as columns. Then it will be convenient to represent 
the labelling operators 0 as matrices CSK'K'K,KT with subscripts for rows and superscripts 
for columns. 

In the situation typical from the physical point of view, the parameters A I  and A 3  
are small while A 2 ,  S and T are arbitrary. For example, when A I  = 2  and A3=0 we 
obtain the matrix elements 

a",, = p  + 2  Roooo = 0 a 0 0  11 - - 1 i ) r (  T +  i) l1I2 

alloo = [ 1 + ( -l)AO]aOO,l 

s1I1, = r( T +  1) - s(s  + 1) + ( p  +2)2 

s o 0  11 - - -aoo1 1 

(5.1) 

(5.2) 
s o 0  - 00 - 2T( T +  1) 

slloo = a"oo. 

a, = f( + 2) * [a(  + 2)2 + s( s + 1 j r( r + 1 j p 2  
s, = $(soooo+ s1Il1) * {& p +2)2 - s(s+ 1) - r( T +  1)i2 

and the eigenvalues (for A. = 0) 

(5.3) 

(5.4) 
(The value K = 0 is impossible for A. = 1. A single value K = 1 remains for S + T = 
A 2  + 2 and K = 0 remains for S = 0 or T = 0.) 

- s(s+ 1) r( r+ I ) } ~ ~ ~ .  

When A I  = A 3  = 1 we obtain the matrix elements 

a1O0, = nollo = [ I  - ( - i ) * ~ ] f [ s ( s +  i)r( r+ 1 ) 1 ' / ~  nlolo = aolol = 0 (5.5) 
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@'lOOl = @0llO = -[ 1 + (-1)"o]( p + 2 ) [ S ( S  + 1) T (  T +  1 ) y 2  

@'Ole= 2T( T +  1) + 2AoS(S + 1) + ( p  + 2)2 - 1 

@'lo1 = 2 S ( S +  1)+2A0T( T +  1 ) +  ( p  + 2 ) 2 -  1 

(5.6) 

= T (  T +  1)[1- (-1)"q - S(S+ 1)+  ( p  +2)2 -  1 

S'O,, = - S o ' l o =  [ l+(-l)".]f[S(S+ l ) T ( T +  1)]1/2. 

S ' O l 0  = T(  T +  1)  
(5 .7)  

In this case the classifying properties of the labelling operators depend on the parity 
of Ao. For A o =  0 the operator .R is degenerate but the eigenvalues of Q,, i.e. 

@* = S(S + 1) + T(  T +  1) + ( p  + 2)2 - 1 

* ( [ S ( S +  1) - T(  T +  1)]2+4( p + 2)2S(S+  1 ) T (  T +  1))lI2 

i [ ( p  +2)2  - 1 - S( S+ 1)  - T (  T +  1)3'- S(S  + 1)  T(  T+ 1)  

(5.8) 

(5 .9 )  

are different when operators s and r (s + t = ( p  + 2)2 - 1)  have the same discriminant: 

of the eigenvalue problem. For A. = 1 operator Q, is degenerate when the eigenvalues 
of R, i.e. 

(5.10) 

are different; the operators s and r are represented in this case by diagonal matrices, 
i.e. the Draayer basis is orthogonal. 

Let us also write the matrix elements of the labelling operators in the case A I  = 2, 
A 3  = 1. The matrices of and Q, in this case are symmetric: 

n, = * [ S ( S +  1 ) T (  T +  l ) ] I /*  

ntt; f = Rjlj$  = $( p + 2 )  

n4-4j-j= -$(p+2)-(-1)"0f(S+f)(T+f) 

nj-$ j = d$-& = ( T + i ) [ j ( S  + $ ) ( S  - 4 ) y  
at-4 4 $ - - n t '  24 -4 = (-1)"o+I( S + f)[f( T + j ) (  T - $)]1/2 

d4;4 =$[ l5T(  T +  1) + 7 S ( S +  1 ) +  1O(p + 212 - 121 

@ $ $ ;  =i [7T(  T +  1 ) +  15S(S+  1) + 10(p+2) ' -  121 

n4 i$ 4 = nI, ; = +[ ( S  + ;)( s - 4)( T + $)( T - 9 ] ' / 2  (5.11) 

@'-44 -4 =a[ 11 T (  T +  1) + llS(S+ 1)  + 2( p + 2)2 - 81 + ( - l ) " o (  p + 2) (S+$) (  T+4) 
(5.12) 

= @l$;  = -( p +2) [ (S+$) (S  -i)( T + $ ) (  T -f)]l/2 
ai-4 f j - - [ ( p + 2)( T + 3) - ( - 1 ) l o (  S + 4)][ 2( s + $)( S - 9 1  
@4 -$ ; = [ T + $  - ( - l ) " O (  p + 2)( S +i)][2( T +;)( T - 91'". 
For operator s we obtain 

Si';& =4[6T( T +  1) - S( S+ 1)  + ( p  + 2)2 +$] 
Sj $ f = $[2 T(  T +  1) - 3S( S + 1 ) + 3( p + 2)* - 91 
Si -44 -4 = $[ 10T(  T +  1) - S( S + 1) + ( p  + 2 ) 2 - 3  
Si4 j j -  - -Shz$&= - [ ( s + + ) ( s - ; ) ( T + ; ) ( T - f ) l ' / 2  

S f f , - , = [ T + f - ( - l ) " o ( S i f ) ] [ 2 ( T + ~ ) ( T - f ) ] ~ / 2  

Si -$ ; = [ T + 4 + (-  1) "I)( S + 4)][2( T + $)( T - ; ) I112 

Slf4-j = S I - $ $  = 0. 

(5.13) 
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The matrices with the elements (5.11) and (5.12) commute mutually as well as those 
of the operators s and r, but the eigenvalues of the operators are non-degenerate. The 
formal solutions of the eigenvalue problems in this case are rather cumbersome. 

The terms above with factor (-1)"o appeared after applying (2.9). Sometimes (e.g. 
when S + T = A I  + h 2  + h 3 )  the labels of the linearly dependent states appear between 
superscripts in (5.1), (5.2), (5.5)-(5.7), (5.11)-(5.14). In this case the zero eigenstates 
(i.e. the null spaces) correspond to certain eigenvalues. 

Of course, in the multiplicity-free cases the corresponding discriminants in (5.3), 
(5.4), ( 5 . 8 )  and (5.9) become exact squares. Since for the fixed couple of parameters 
from the set A I ,  A 3 ,  S, T the multiplicity of S, T in (h lh2h3)  is restricted, equation 
(2.9) together with the results of Q 3 is sufficient for the eigenvalue problem of the 
labelling operators. 

The expansion of the linearly dependent states is unavoidable when the restriction 
of the multiplicity of S, T in ( A l A 2 A 3 )  is caused by the fixed value of any single 
parameter between the following linear combinations: 

p + p ' - S - T  P - T  P-S (5.14a) 

p - /p''l-I T - SI. (5.146) 

Particularly, for p + p' = S + T or p - T = 0 the labels K s ,  K T  accept the values 

Ks = p" KT = p ' .  (5.15a) 

For p + p ' -  1 = S+ T they accept (5.15a) together with 

Ks = p' KT = P I ' .  (5.1 5 b)  

For p - T = 1 and lp"l+ 1 S S < p ' -  1 they accept (5.15a) together with 

Ks = P I ' *  1 KT = p ' -  1. (5 .15~)  

For p - p" = T - S ( p "  2 0) they accept 

K S = S  K T =  T-A2=S+A2 (5.15d) 

and for p - p " -  1 = T - S ( p " 2  0) they take on the values 

K s = S , K T =  T-h2+1 and Ks=S-1 ,  KT= T-A2. (5.1 5 e )  

As an example of the second kind we present the matrix elements of the labelling 
operators for S + T = p + p ' - 1 :  

f l P ' P " p , p , ,  - f l P " P '  p ' , p ,  = p " ( S  - T) 

f l P ' P " p . ~ p . =  (-1)'3+'(S+l)(T-p'+ l ) Z  (5.16) 

f lP"P'p~p~,=(-1)h3+1(~+ i ) ( s - p ' + i ) z - '  

SP"" p ' p , ~ - S p " p ' p ~ , p , =  (2T+3)[pf t2-p ' (p+ I ) ]  

S P ' P " p ~ ~ p ~ = ( - 1 ) * ~ ~ 1 ( 2 T + 3 ) p ' ' ( T - p ' +  l ) Z  

Sp"p'p ,p , ,  = ( -1)*3(2 T + 3 ) p " ( S  - p ' +  1)Z-l 

where 

(5.17) 
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together with corresponding eigenvalues 

a, = p ” [  p ’ (  p $2) + (S -p’+ 1)( T - p ’ +  1) +:(A*+ I ) ]  

q+p”2(s- r)2+(s+l)(r+l)(s-p‘+1)(T-p’+1)~’/2 (5.18) 

S ,  = p ” 2 [ (  + 212 + S ( S  + 1) + p ’ ( p ’  - 2 s  - 1) - ( p  - r)(2p + 311 

+ [ p (  pf  - 1 ) + TI( r + 1) + t ( 2  r + 3)[ p ’ ( p  + 1) - p”’] 

~ ~ ( 2 r + 3 ) ( [ p ’ ( p + i ) - p f f 2 ] *  

- 4p”2( s - p ’  + 1)( T - p ’  + 1)) 112. (5.19) 

The operators Q, and are dependent in this case: 

Q, + 2p” [ s ( s + 1 ) + T (  T + 1 1 3  ( p ”2 + 1 ) - ( p + p ’1 ( p + p ’ + 1 ) 

+p”2[2p‘( p + 2) + 2(S -p’+ 1 )( T - p ’ +  1) + 3p + p ’ +  41 

+ 2 ( s  + 1 ) (  r + i ) (ppr  - p  - 1) + p y p  + 1)(3p + 3p’+ 4). (5.20) 

For S +  T = p  + p ‘ -  1 and A l  = A 3  the Draayer states are the eigenstates of the operators 
s and t but the operator Q, is degenerate. In the above we omitted the matrix elements 
of t that are related to those of s by the corresponding substitutions (see § 3). 

6. Concluding remarks 

We obtained rather simple explicit expressions for the matrix elements of the labelling 
operators in the Draayer basis of the SU(4) =I SU(2) x SU(2) chain. For the normalisa- 
tion of the eigenstates and the construction of the coupling coefficients the overlaps 
of the Draayer states are necessary. They will be considered in a future publication. 
However, for multiplicities larger than two, only a numerical solution of the eigenvalue 
problems of the labelling operators is possible. For some classes of irreps we demon- 
strated that the definite labelling operators become degenerate, but we have not found 
a general rule governing these relations. 

It is difficult to estimate the advantages of the diagonalisation of the overlap matrix 
(see Hecht et a1 1987) in comparison with the solution of the eigenvalue problem of 
the labelling operators. 

Appendix. On the expansion of the linearly dependent states of the Draayer basis 

The linearly dependent states (2.6) may be expanded in two steps, introducing an 
auxiliary basis (Ahmed and Sharp 1972, AliSauskas and NorvaiSas 1979). Let us write 
the special generalised isofactors of SU(4) =I SU(2) x SU(2): 

( A i O A 3 ) ] [ ( A i O A 3 )  ( O A 8 )  ( A  
S i s i  S3S3 U, Soto W ,  Soto S 2 t 2  K s S ;  KTT 

(A100) (OOA3)  
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which couple the orthonormal states of the symmetric irreps (A,OO), (OOA3) and (OA2O) 
to non-orthonormal Draayer states. Here 

!(;A - k ) ! ( 2 ~ + l )  1 
2(2s + 1)(2t + l)A ! ( A  + l ) !  

'"= [ (A -s - t ) ! ! ( A  -s+ t + l ) ! ! ( A  +s- t +  l ) ! ! ( A  + s +  t+2)! !  

We introduce the direct and inverse expansion matrices A and Q. The expansion 
coefficients A C < ; ~ ; ~ 3 ~ ~ ~ o r ~ 2 ~  of the Draayer states in terms of the auxiliary basis states 
may be obtained by substituting into ( A l )  the following values of the parameters. For 
S > T, s1 + s3 > T we substitute 

~ 2 =  S +  A - SI - ~3 t ,  = 0 to= T so = s, + s3. (A3a) 

For S < T, s1 + s3 > S we substitute 

s2 = 0 t 2 =  T + A - s , - s ~  so = s to = s, + s,. (A3b) 

For s, + s3 s min( S, T )  we substitute 

s2 = s - SI - s3 + 1 - SAo& t 2  = T - t o  SO = to+ A 2  = SI + ~3 (A3c) 

unless A I  - A 3  = 0 mod 2, A. = 1 .  For s, + s3 S min( S, T ) ,  A. = 1 we substitute 

For 0 < s3 s min( S, T ) ,  A. = 1, s, = 0 we substitute 

s2 = s - s3+ 1 t 2  = T - to so = to = s3 (A3e) 

and for 0 < s, s min( S, T), A, = 1,  s3 = 0 we substitute 

s2 = s -SI + 1 t2 = T - to so = to = SI. (A3f 1 
The last two conditions, (A3e) and (A3f), represent particular cases of (A3c). Here 
and below A, A, bo, A2 and b2 are equal to 0 or 1 so that 

SI + ~ 3 - S  + A > - A  s , + s ~ - T + A ~ - A  A*-S+ T-A0 (A4) 

are even integers. 
Now the parameters s,, s3 and (if necessary) A2 or b2 may be used as the labels 

of an auxiliary basis? and the coefficients Ak,J(3fS,3;3(A2 or A,, form a triangular expansion 
matrix. The elements of this matrix with k ,  > s1 or lk31 > s3 or k ,  = sl, k3 = -s3, A2 = 1 
( A 2 =  1 )  vanish. The parameters are also restricted by the condition (cf (2.8)) 

(A5a) 

(A5b) 

( A  A A .ST) 

s1 + s3 2 max(S, T )  - A 2  

SI + ~3 2 i[S+ T - A 2 +  1 + ( 1  -AO)A2]. 

t It is possible to choose from two alternatives (A3c)  or ( A 3 d )  for A ,  - A 3  # 0 mod 2, A ,=  1 
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We succeeded in inverting this matrix explicitly? and finding the following expansion 
coefficients, Q, of the auxiliary basis in the different regions of parameters: 

(qslG;s3)-1 Q f ( A l A 2 A 3  ; S T )  = nf (AfA2A3.ST)( -  1 )  k ,  - s l  

S I S ~  ; k i k3  S I S ~ ( A )  

(S + K s )  ! ( S  - K s ) !  
( T +  K T ) !  ( T -  K T ) !  

( S ,  + ~3 + S + 1) 
(SI + s3+ 1 - A )  

(SI + s3 + s + y  - l ) !  

x (  1 
x c  y ! ( k l  - SI - y ) !  (-k3 - ~3 - y ) !  ( S  + S, - k ,  + y ) !  ( S  + S ,  + k3 + y ) !  

x [(s, + s3 + S ) ( 2 s ,  + 2s3 - k ,  + k3 + I)’-’ 
+2(1  - A ) y ( 2 s 1  +2s3+ i ) ]  k 3 S 0 ,  T a  K T >  s (A61 

(G;slG;s3)-1 ~ f f ( h ~ h ~ A ,  ; S T )  - - f r ( A l A l A 3  ;ST)(- 1 )  k3+s3 
Sis3Az  ; k i k3  s i s 3 M A d  

X [(s+ &)! (s - K s ) !  ( T +  K T ) !  ( T -  K T ) ! ] - ” ~  ( 1  - 8k10)( 1 - 8k30) 

x [ s, k3 - (- 1 )  ‘2kls3] 

k, > 0,  k ,  + Ik31 min(S, T ) ,  A. = 1 ,  sI > 0, s3 > 0. 

The substitution of 

S*T KS* K T  k,+ -k3 l i + A  
( A l A Z A 3 ; S T )  
s i s , ; k i k 3  into (A6) (together with the additional factor ( - 1 ) A 3 )  allows us to obtain Q 

also for S 
The normalisation factors n’, n”, ii” in (A6)-(A8) may be written such as to take 

into account the fact that the diagonal matrix elements of A and Q (with s, = k , ,  
s3 = I k31, sgn( k ,  - $) = 2A2 - 1 or 2A2 - 1 )  are mutually inverse. 

Ks > T, k3 2 0. 

t The advantage of our choice of the auxiliary parameters to compare with Ahmed and Sharp (1972) is in 
the appearance of the stretched or almost stretched Clebsch-Gordan coefficients of SU(2) in ( A l )  correspond- 
ing to the (A3c) or (A3d) cases. 
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Generally, the auxiliary labels may accept values in several regions (A3a)-(A3e). 
(Only (A3a) and (A3b) are mutually exclusive, as well as (A3c) and (A3d).) When 
the labels klk3 and sIs3 are taken from different regions the inverse expansion 
coefficients take on more complete forms, for example: 

(A10) - ! f ( A l A 2 A 3 , S T )  - 
Qor3 ; k ,  k3 - Qo"s3 ;O- kiAo",-k; ;si s i &  Q:;s;& ; k l  k3 

k ; & s i s i  

where si > 0, k, > 0, k,  + I  k31 S min(S, T) (see also (3.1 1) of AliSauskas and NorvaiSas 
1979). Luckily, they are not necessary for our main purpose, namely the expansion 
of the linearly dependent states. 

of the linearly dependent states (labelled by 
KsK,  or klk3) may be found after multiplication of the matrices Aklk3;SIS3(~20rLi2) and 
Qsls3(Az or z 2 ) ; k l k l ,  where the summation parameters sl, s3 (and A2 or A,) are restricted 
by the condition (A5a) or (A5b). Since these conditions are concealed as the factorial 
factors in n', n'' or A", the sum continued to the whole region is equal to zero. Thus 
we obtain 

( A  A A ;ST) The expansion coefficients Rk,k3;k:k3 

where for IT- SI > A 2  we use the condition s, + s3 < max(S, T) - A2 together with the 
coefficients Aklk3;s,s3 expressed according to (Al)  with ( M b )  or ( M a )  and Q:ls3;klk3 

expressed according to (A6) (and (A9)), and for I T - SI s A 2 +  1 we use the condition 

s1 + s3 < i[S + T - A 2 +  1 + (1 - Ao)A2] together with A k,k3;SIS3A2(~2) expressed according 

to (Al)  with ( M c )  or (A2d) and (d:ls3A2(&);klk3 expressed according to (A7) or (A8). 
In all cases the factors n', nrr or n" in A and 0 should be concealed. In some regions 
(for I T - SI = A z +  1 or S - T = A 2  + 2), where the different solutions join, the preference 
should be given to the last versions. 

We should emphasise that the explicit expressions of some Rk,k3;klk3 are available 
(AliSauskas and NorvaiSas 1979) for the parameters or KT at the distance 1 or 2 
units from the region of the linearly independent state labels as well as for _k, = k ,  = 0 
or k3 = k3 = 0.  Equations (5.1), (5.2), (5.4), ( 5 . 5 )  and (5.7) of AliSauskas and NorvaiSas 
(1979) may also be used for the recursive expansion of the linearly dependent states, 
because the same coefficients R appear in the more general expansion 

( - ) I ,  

) ( A W  
( A l A ; A 3 ; s n  I ( A i A d 3 ) ~  I K s ~ ~ ~ ~ ~ ~ ~ M T )  = K s ~ T  R k 1 k 3 ; k 1 k 3  KsSMs;  KTTMT 

where A ; 2 A 2  ( ,+;-A2 is even for (T-SISA;+l )  and for A ' , > A 2  some linearlydepen- 
dent states are also included in the RHS. These linearly dependent states may be 
expanded in subsequent steps by means of the substitution of the same equations. 
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